VISCOUS FLUID FLOW IN A HORIZONTAL LAYER DUE
TO THERMAL INHOMOGENEITY OF THE LOWER BOUNDARY

I. P. Makarenko and L. M. Simuni UDC 536.24

The nature of the flow induced in a layer by thermal inhomogeneity of one of the boundaries is
determined on the basis of a numerical solution of the complete Navier—Stokes equations. It
is found that stable stratification effectively suppresses the generated flow.

We wish to consider viscous incompressible fluid flow in the Boussinesq approximation.
takes place in a flat horizontal layer, the lower boundary of which comprises a solid surface.
ature of this surface is T; everywhere except for one section that has a temperature T,. The upper boundary
of the layer is a free surface, which is fixed in space and on which a temperature T; is specified everywhere.

The motion
The temper-

In the Boussinesq approximation (conventional notation) the flow is described by the system of equations
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subject to the boundary conditions
' Ve=0, v,=0, T=T, for y=0, |xl>a,

Us=0, =0, T=T; fa y=0, {<y,
?&C.:O, Uy:O, T=T; for y=h.
dy

A periodicity condition is given on the side boundaries of the layer. We introduce dimensionless variables
according to the equations
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Fig. 1. Streamlines and velocity profiles. a)y =0; b) y =10;
1) streamlines; 2) velocity u; 3) velocity v.
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with the boundary conditions
=0, v=0, =0 oo y=0, x> alh,
u=0, v=0, d=1 for y=0, x| <<ah,
— =0, v=0, #=19 for y=1.

Here Gr = gB(T,—T) h’/v? is the Grashof number, Pr = v/K is the Prandtl number, and y = (T3~ T{)/(Ty~T,).
In this article we give results obtained by the relaxation method for the case of steady flow.

Introducing the stream function ¥ and the vorticity ¢ according to the equations u = 84/8y, v = — 94/9x,
@ = du/dy —ov/ox, we arrive at the system
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We take the Prandtl number equal to unity. The boundary conditions for the stream function and the vorticity
have the form ¢ =0aty=0and 9 =0, ¢ =0at y=1. An additional condition for the vorticity at the solid
boundary is formulated in the finite-difference solution of the equations [1].

We seek a solution of the system (3) by the finite-difference method according to an "explicit-implicit"
scheme; the procedure is similar to that used in [2, 3]. Accordingly, the finite-difference solution of the first
and third equations of the system (3) is determined by an explicit scheme, and in each step the difference ana-
log of the second equation of the system (3) is solved by the Seidel iterative procedure. The size of the time
step At is constrained by the stability condition for the explicit scheme; if the stability condition is violated,
then the number of iterations required in order to find the values of the stream function at the nodes of the com-
puting grid (within specified error limits) increases. This fact provides a basis for automatic selection of the
step At, which is increased as the number of iterations is decreased and vice versa.

Below, we give the results obtained for various relafions between the temperatures T;, T,, and Ts.

If Ty = T; (y = 0), the flow process has the form shown in Fig. la; it intensifies as the Grashof number
is increased. We assume here that T, > Ty. If T, < T, then the direction of flow is reversed in the closed
streamlines.
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With an increase in the number vy the flow diminishes, the center of circulation shifting toward the lower
boundary. The velocity of the fluid at the surface decreases in this case (Fig. 1b). We note that the diminu-
tion of the flow intensity occurs very abruptly near the valuey = 1. Figure 2 shows the variation of ]zplm ax?
which characterizes the flow intensity in the vortex, as the number vy is increased. It is seen that the flow in-
tensity undergoes an abrupt increase as y is decreased (for small values of this number).

In the calculations leading up to the results shown in Figs. 1 and 2 the period was taken to be one fourth
the height of the layer (for a/h = 0.4). The flow pattern is not altered by increasing the period. Decreasing
a/h for a fixed Grashof number diminishes the flow, but does not change it qualitatively.

The calculations have been carried out with a partition of the interval of integration into 10 and 20 seg-
ments along the y axis and into 20 and 40 segments along the x axis. The results agree within 3-5% error
limits.

Thus, by a numerical solution of the complete Navier—Stokes equations in the Boussinesq approximation
we have succeeded in determining the influence of stable stratification on the motion induced in a flat layer by
a temperature inhomogeneity of the lower boundary. We have confirmed the occurrence of an abrupt decrease
in the flow velocities as the stratification is enhanced. The generation of an intensely circulating flow in a
stratified fluid layer as a result of an elevation of the temperature of part of the lower boundary requires that
this temperature attain a value close to the temperature of the upper surface. ’

NOTATION

t, time; h, height of the layer; a, length of the section of the lower boundary with temperature T,; x, v,
Cartesian coordinates; vy, Vys velocity components; p, pressure; T, temperature; v, kinematic viscosity; p,
density; k, thermal conductivity; 8, coefficient of cubical expansion; g, acceleration of gravity; T,, T,, T3,
temperatures of different parts of the boundaries; u, v, dimensionless velocity components; P, dimensionless
pressure; <4, dimensionless temperature; y = (Tg—‘Tl)/(TZ_TI).
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